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ABSTRACT

Al-Kayead, Sami Faleh. Additive Kernel Estimator for the Probability
Density Function. Master of Science Thesis, Department of Statistics,
Yarmouk University, 2011 (Supervisor: Dr. Omar Eidous).

One way of improving the rate of convergent of classical kernel estimator is to use
higher —order kemel function. In this thesis, we suggest a new method called
additive kernel to estimate a smooth pdf f{x).The proposed method produces many
estimators for f{x), which are simple and interpretable as the higher —order
estimator. The asymptotic properties of the proposed estimators are derived and
formula for the smoothing parameter is also given based on minimizing the
asymptotic mean square error (AMSE). Theoretical asymptotic results show the
good potential properties of the proposed estimators over the higher —order kernel

estimator .

Keyword:

Kernel method, higher —order kernel estimator, smoothing parameter, bias

rate of convergence.
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CHAPTER ONE

INTRODUCTION

1.1 Intreduction

There are two approaches to estimate an unknown probability density function
(pdf) f(x) for a random sample Xj,...,X,. One can either choose the parametric
approach, which requires the assumption that the random sample belongs to a
known parametric family of distributions with unknown parameter(s). Then the
unknown parameter(s) are estimated based on a random sample Xy, ..., X,. An
obvious pitfall of the parametric approach is that important data structure can be
masked when there is no previous knowledge of the sample to assist in the choice
of the parametric family of distributions (Jeter 2005). Alternatively, we can
determine the pdf using the nonparametric approach, which requires no
assumptions about the functional form of density. Thus, a nonparametric approach
is a good choice to estimate the unknown pdf f(x)if the functional form of the pdf

is unknoun.

The most popular nonparametric method in density estimation is called “kemel
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density estimation”. The estimator obtained by using this method will be called
“classical kernel density estimator”,

1.2 Classical Kernel Method

Let X,,..,X, be a random sample from a continuous univariate pdf f(x). The
nonparametric classical kernel density estimator of f(x) is (Silverman, 1986):
FGO) = (k)™ Ty Ky {(x — X/ 1) (L.1)
where K(5)(.) is kernel function (second-order kernel function) and 4 is a positive
real number, called the bandwidth or the smoothing parameter. The kernel function
K3y is assumed to be symmetric function satisfying the following conditions:
f_mw Kay(w)du =1, f:o uK;y(u)du =0, fj:o W Kpy(wdu =k, # 0 < 0 (1.2)
If we assume that h,is chosen for thatnh, — 0 asn — oo,then, under the

conditions(1.2), the mean of f(x) can be expressed as follows: (Silverman,1986)
Ef(x) = f() + 3 h%2(Kezy) [/ (x) + 0(h?). (1.3)
Thus, the bias of f(x) is given by
R 1
bias (f(x)) = 5 h2ua(Kezy )f" () + 0(h?) (1.4)
where (K3 ) = [ 2% Ky (2)dz. According to Silverman (1986), the variance

of f(x)is
var{f(x)} = (h)"*f Key? (2f (x — h2)dz,


omars
Text Box
.
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=(nh)R(K) )f () + o((nh)™), (1.5)

where R(g) = f_c; g°%(2)dz Therefore, the mean square error (MSE) of f(x) is
MSE (f (x)) =E(f (x) — f(x))?,
=Var (f(x)) + (Ef(x) — f(x))%

= (nh)R(K(z) )f (x) +% Rty (K )an(x)z +o((nh)™!
+h%). (1.6)
The MSE combines the variance and the squared bias of f(x) at a fixed point x to
measure the quality of f(x). The mean integrated squared error (MISE) is another
global measure which is used to measure the quality of f(x) over the entire real
line. It is simply defined by the equation (Silverman, 1986):
MISE= [ MSE (f(x)) dx.
Therefore, the asymptotic mean integrated square error (AMISE) of f(x) is

(Wand and Jones, 1995)

AMISE{f (1)} = (nh)*R(Kzy ) + 1 h*uo(Kizy ) 'RUF™). (1.7)

1.3 Smoothing Parameter Selection
The choice of a bandwidth # in the kernel density estimator is very important

because the value of the % plays a vital role in the accuracy of the kernel density
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estimator ( Wand and Jones 1995). As we can see from (1.4) and (1.5), if the
bandwidth % is chosen too large, then the bias of f(x) increases and the variance
decreases. On the other hand, if the bandwidth is too small, then the bias of f (%)

decreases and the variance increases. Usually, the bandwidth is chosen by finding
the value of / that minimizes the AMISE. This value of / is known as the optimal
bandwidth with respect to AMISE, which is given by Jeter (2005),

_ RE®) 15
#ZZ(K(Z))RU,,)H] - (1.8)

Formula (1.8) demonstrates that 2 approaches to zero (as n— o) but at a rate

slower than n™1.

1.4 Kernel Function

The selection of kernel function X is discussed in Silverman (1986). He reported
that all functions K(z) that satisfy f_zK (z)dz=1, f:oz K(z)dz=0 &
I” 2% K(z)dz # 0 < oo perform about the same as each other in estimating f(x).

For example, the following functions are candidate as kemnel function:

N

(@) K(z) == ,lz| <1, (Rectangular kernel)

0)K (@) =2 (1-322) /V5 , |z] <5 , (Epanechnikov kemnel)
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(K@ =-=e¥/? , 0 <z <, (Gaussian kemel).

Usually, the kernel function K is chosen to be a unimodal and symmetric density to
yield unbiased estimates using a symmetric distribution of the weights on both
sides of the point of estimate. However, the selection of 4 is more efficient on the

performance of f(x) rather than K (Ali, 1998).

1.5 Thesis Objectives
The main objective of this Thesis is to propose a new kernel density estimator for

f(x) and then to investigate its asymptotic properties. The proposed estimator is

denoted by }: (x) to this end, we will follow the steps below

(1) Derive the asymptotic mean and the asymptotic variance of proposed estimator

(2) Derive a rule for the optimal value of the smoothing parameter b of proposed
estimator

(3) Explore the relationship between the asymptotic properties of proposed
estimator and that of the higher-order kernel estimator.

(4) Make a mathematical comparison between the properties of proposed estimator

and that of the higher-order kemel estimator.


omars
Text Box
.
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1.6 The Rest of this Thesis is Organized as Follows

According to our objectives, this thesis is organized as follows:

Chapter Two describes the higher-order kernel estimator and the proposed
estimator of f(x). The asymptotic statistical properties (the bias, the variance and
the mean square error, MSE) of both estimators are also presented in this chapter .
In Chapter Three a mathematical comparison study between the asymptotic
properties of the higher order kernel density estimator and the proposed estimator
is presented. The conclusions of the study and the suggestions for further research

are given in Chapter Four.
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CHAPTER TWO

HIGHER-ORDER KERNEL AND PROPOSED
ESTIMATOR

2.1Introduction

In this chapter, we present the higher-order kemel estimator of f(x) and its
asymptotic properties. also, Its asymptotic properties are derived and a formula for
the optimal smoothing parameter of the proposed estimator is given. The
relationship between the properties of two estimators are also derived in the final

section of this chapter.
2.2 Higher—Order Kernel Density Estimator

One way of improving the accuracy of the ordinary kernel estimator (1.1) is to use
higher-order kernel function. Let u;(Ky) = f 2/ K(y(2)dz, then the second-order
kernel, K requires to(Kzy) = 1, i1 (K(zy) = 0, and g1, (K(z)) = k # 0 < o0, to
ensure that the bias of estimator (1.1) has a rate of convergence O(4*), while the

convergence rate of the variance is 0(nh) 1.
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To improve the bias convergence rate of estimator (1.1), one can construct higher-
order kernels (Wand and Jones, 1995). Let K, be the rt"-order kernel assumed to

be symmetric about zero (even) function, then K{, is defined to have

Hy(K ) =1
2K )=0, j=123,.,r-1. (2.1)
#r(K(r))=kr ;éO((D

For example, the fourth-order kernel (r = 4) is the kernel function K4y that should

satisfy the conditions: uo(K(4)) =1, yl(K(4)) = uz(K(4)) = Ju3(f((4)) =0 and

ﬂ4(K(4J) = k4 * 0 < ©o,

Wand and Jones (1995) gave a rule that can be adopted to construct higher-order

kernels as the following:

Let @(x) be the standard normal pdf and take K5,(x) = @(x), then the r**-order

kemel, K, is obtained by using:
Koy () = 2Kopy(0) + 33K o5 (), T=4,6,8,..
For example, the fourth-order kernel, K4, (x) is
Kiay(x) = = Kizy(x) + 2 %K' (3 (x)

=2 B(x) +3x ' (x)

8
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=§ (Zi(x)-%xz B(x)
=2 0()(B - D).

Wand and Schucany (1990) gave a class of higher-order kernels that satisfies
condition (2.1). They derived the following rule to construct Ky(x) based on the

Gaussian kemel function

(_l)r/z @(r—l)(x)
27/2-1(r /2 — D x

Koy(x) = r=24,6,..

where @(x) is the standard normal distribution and @™ (x) is the mt* derivative
of @(x). The first five even-order kemels are given in Table (2.1), which are taken

from Wand and Schucany (1990). In addition, we added the value of R(K(;;) of the

corresponding even-order kemnel and the rate of convergence for the corresponding

bias.

Jones and Foster (1993) demonstrated that a higher-order kemel (r = 4,6,...) may’
take some negative terms and the density estimator based on them may be
negative, especially in areas where the data are sparse, but this might be tolerated if

improved bias ensues.
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The question arises here is; why r takes only even values? The answer of this

question can be illustrated as follows:

Since K, is assumed to be symmetric function, then ;(K) =0,V j =1,3,5, ...
Therefore, if one try to obtain O(h*") bias for = 1, 3,5, ..., then he automatically
obtains O(h*"**) bias. More clarification can be detected by inspecting the bias of

F*(x) in the next section.

10
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Table (2.1): Gaussian-kemel of order 2,4,6,8 and 10 (Wand and Schucany, 1990)

T K R[Kn] bias rate of convergence
2 3(x) 0.2821 o)
4 1(3-x2)8(x) 0.4760 ok™)
6 §(15 — 10x% + x*)B(x) 0.6240 o)
8 =~ (105 ~ 1052 + 21x* — x%)8(x) 0.7479 or™)
10— (945 — 1260x2 + 378x* — 36x5 + x®)B(x) 0.8565 or™)

384

11
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2.2.1 The Expected and Bias of Higher-Order Kernel

Let Xj,...,X, be a random sample from a continuous pdf f(x) and assume that
an rt"-order kemel that satisfies the conditions (2.1) is obtained. Then the r**-

order kernel estimator of f(x) is
F1 @) = R Sy K {(x — XK} ~0 < x < o 2.2)

If the rt*-order derivatives of f(x) are continuous, then the expected value of

f*(x), is Wand and Jones (1995)
Ef*(x) = [ Ky (2) Bieo(—h"2)' () fO(x)dz + o(h™),
= ) = B FO @ (Ky) + 5= FO )tz (Kery) + -+
(~yr (o por £yt o (1),
= £ + 1 R R O o), (2.3)

Therefore, the bias of f*(x) is
Bf' () =Ef'() ~fG0).

= (-1 {2 Ot o)

= QRO (x)+o(hT), (2.4)

12
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which indicates that the convergence rate of the bias of f*(x)is O(R'"). The
values of @, = (—1)7 {f‘_ﬂf_{frﬁ} forr = 2,4,6,8,10 are given in Table (2.2) where
K(2)is standard normal.

2.2.2 The Variance of Higher-Order

The variance of f*(x) is

Var(F*(0)) = Var{(nh)™* S, K{(x — X;)/h)

1 1
= —E[K{(x ~ X)/hY? = — [EK{(x — X)/h})?

= — f(R[Kg] + oY), (2.5)

where R(g) = [°._g?(x)dx. The values of R[K] for r = 2,4,6,8,10 are given

in Table (2.2). Note that, the rate of convergence for the variance of f*(x) remains

O(nk")™, the same as that of Estimator (1.1)
2.2.3 The Mean Square Error and the Smoothing Parameter of f"' (x)

The MSE combines the variance and the squared bias of f *(x) at a fixed point x

to measure the quality of f*(x), which is given by

MSE (f*(x) )=E(f*(x) — f(x))?
=Var(f*(x) )+ (Ef*(x) — f(x))?

13
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= ;}1- fEOR[K ] + (1) {ﬂ'fﬁ—)l} T ()]
= —f(OR[Ke)] + {“’—(’-“—’)}2 R FO P (2.6)

The value of h* is obtained by considering the MSE as a function of h* (say
D(h")), differentiate D(h*) with respect to h* and equating to zero, then solve the

resulting equation with respect to h* as the following:

2
— fEOR[K] + 2rh2r— {——“’(f!“")} [FP@)* =o.

The solution of the above equation gives,

.n_;:::z f(X)R[K(r)] = 2rh*?r-1 {_ﬂr(:(!(r))]z [f(r)(x)]z_

If we multiply both sides of the last equation by 2*? then we obtain

(D OR(K )

h*2T+1 —
n(2r)[f 12, (Kwy)

Therefore,

1/(2r+1)

- :( D’ fCOR(Kr) )
n2rfO0)12u?_(Kiry)

1/(2r+1)
- () ) , 2.7)

T (n[f")(x)lz

14
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2
where V. = [((2—1‘—%%]1/ (2r+1) The values of V. for r = 2,4,6,8,10 are given

in Table (2.2). Substituting the expression of h* back into Formula (2.6) leads to

the smallest possible value of MSE for f*(x), which is given by,

MSEf*(x) = fR[K) —+

a [ (r2f ()R (Ker) ]ﬁ
n2r)[f M ))%u2, (Kp)

2r
{u,,(xm)}z [[n ()2 (OR(Kry) W} [F 0]

r! @I @Pu? (K m)

2r =2r

2r+1 S S 1
= [{Zr}zr/(zri-:){r!}2/(27+1)] [f(x)R(K(r))] Zr+t [f(?’) (x)) Z#Zr (K(r) )]2r+1 [n]zr+1

2

= T () [f 2 [nf 2.8)

" _ 2r+1 s
where Tr - (2r}r/@rs1){r}2/(2re) [R(K(T))]ZT+1

1
[1?,(Kgy)]7+1 . The values of T,
for r = 2,4,6,8,10 are given in Table (2.2). Note that the functions K, r =

2,4,6,8,10 are given in Table (2.1).

We note here that, if the asymptotic mean integrated squared error (MISE) is to be
used instead of the asymptotic MSE then the right hand side of equations (2.4),

(25), (2.7) and (2.8) are slightly changed and they become

15
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1 - 1
Qh [Z FD(x)+ (R, —R[Kn]+on™), I, [nfmmr)(xnwx]1/(2r+1) and

1 -2r
T, { f_mco[f(")(x)]zdx}'f?'ﬁ [n]z+1 respectively. For purpose of comparison, the

using of MISE or MSE are equivalent.

16
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Table (2.2): The values of y, (K(r)), Qr ,R[Ky], V. and T for r = 2,4,6,8,10.

r K #r(Kny) Q- R[Kmn)] Ve T,

2 Kz 1 0.5 0.2821 07764 0.4582
4 K 3 0125 0.4760 L1602 04616
6 KC6) 15 0.020833 0.6240 1.4451 0.4678
8 K(g) -105 -0.00260417 0.7479 1.6818 0.4725
10 K(IO) 945 0.000260417 0.8565 1.8889 0.4761
Note that

1K) = ., 7 Ky (2)dz, Q- = (—1)" {ﬁy} , RIKn] = Kn*(2)dz,

zr

_  OD?R(Kn) _ 2r+1 1
V= [m]1/(2r+1), T, = GG e [R(K(r))]2T+1 [ﬂzr(K(r))]zr+1

and Ky, 7 = 2,4,6,8,10 are given in Table (2.1).

17
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2.3 The Proposed Estimator

Let X;, ..., X, be a random sample of size » from a probability density function
f(x) that assumes to have r® continuous derivatives at x. We propose the

following kemel estimator for f(x):

- 1 d n _X.
f(x)=EZZajK[ij 'J, —0<X<0., (2.9)

j=1 =

which we shall call it “additive kernel estimator *°, where Efﬂ ja; =1, Kis the

second-order kernel function satisfies condition (1.2) , b is the smoothing

parameter, d and q;, j =1,2,3,...,d are constants introduced to control the

magnitude of bias and variance of f (x).

We can show that the integration of the proposed estimator over the

range (—o0, ) equals one as follows:

Jo fGodx = |7 (nb) 154, T, a;K{(x — X;)/jb} dx

= (b) ™ s Bl 0 [0 K (75 dx
Now, letu = {%{5} then

S5, K {5 dx = jb [, K(u)du = jb. Thus

18
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[% F dx = (nb)™1 T4, S, a; (jb) = (nb)~1(nb) S, ja; = 1 because
Z?:ljaj = 1

A special case of (2.9) was studied by Eidous (2011). He derived the asymptotic
bias and variance of f(x) when x=0 and for the non-negative values of the
random sample applying for line transect data. The asymptotic properties of f(x)

are derived in the following subsections.

2.3.1 The Expected Value and Bias of Proposed Estimator

The expected value of f(x) is:
E(f(x)) = E[(nb)" Tf., iy ;K {(x — X;)/jb}]

= (nb)™* L., jnEK{(x — X;)/jb}.

Now, the expected value of K {x;; ‘} is

E(k 5 ) = Lok (5 rea.

Let u= {x;—:‘} and use the Taylor’s series expansion of f(x — jbu) around x,

then,

19
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E(k {"J";‘]) = jb [° KWf(x — jbu)du,

= jb f_mmK(u)[f(x) — jbuf' (x) + jzbzu:'f () _ 13b3tt;f (x) + - ]du,

= Jbf ) = JPPF (o) [ uk ) + L ° 2 Kyt~ -

'3b3 "(
J gx)#z([{)+‘",

= jbf (x) = jb*f () (K) +

where u; (K) = f_mm u* K(u)du. Now, suppose that the smoothing parameter and

the sample size are related such that b — 0 when n — oo, then the expected value

of f(x) is:
E(f(x)) = E((nb)™ Xf-q X1 ;K {(x — X;)/jb})
= (b)) X, 4 E(K{(x — X)/jb}

= 31 0; G () — J2bf Oy (K) + LELQK0

r . z " -
= f@) Eiyja; — bf W (K) Ty j%a; + L2, (0 SL, ey

b7 FM(x)

ot = (K) T a4 o(B7).

= FGOA, — Bf D@y (K) Az + 2L F O (), (K) A5

b F )

4ot ZL2D Y ()4, + 06T, (2.10)

20
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where A; = Y%, j'a; and f (7 (x) is the 7" derivative of f(x). Therefore, under

the constraints A; =1 and A3 = Ag = A; = - = A,_; = 0, the biasof f(x) is

B, (f(x)) = Ef () — f ().

b" (r)(x) (K)Ay
f :llr 1 O(br)

= QQ-b M (x) + o(b7), 211)

K)A )
where QQ, = @ Because the second order kernel K is assumed to be even

function, then g, (K) = f_moo u”K{u)du = 0, for odd values of r. That is y,(K) =

u3(K) =ps(K)=-+-=0. Therefore, the terms bf V() (K)A4,,

b3f(3
3!

) bS
() Uz (K)Ay, L

(s)
5 (x)ﬂs(K)As, .. are vanishing without assuming A, =

Ay =Ag =--=0. In other words and since r is even value, the constraints
A; =1 and A3 = A; = A; = +-- = A,_; = 0 should be valid to obtain O(b") bias
for f(x).

2.3.2 The Variance of Proposed Estimator

In this subsection, we derive the asymptotic variance of f (x) under the assumption

nb — o when n — o . The variance of f(x) is
Var(f(x)) = Var((nb)* L%, T, a;K{(x — X;)/jb})
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= SeVar[Eie, 4K (G ~ X)/jb))]
= B oG~ X0/10))? — (S G ER (3~
xp/ien)’ |

By substituting the expression of EK[(x — X;)/jb] in the second term of the last

expression then we obtain
- 1 -Xi -
Var(f() = 5z EQfa gy (KD)? + o(n™)

nbz (Z, X 1ajalK[ ]K[ ])+O(n“1)

nszO:J =1 szz{ }+221<zza;a:K[x X] [ ])+O(n—1)

x—X;

= G JZEKZ{ 4250 R gaEK —] =2 +o(m ).
Now,
ER? (0 = [Tk (0 () dx
= jb [Z K2 (u)f (x — jbu) du

=jb [*_K2W)[f(x) — jbuf (x) +L“:f'@+ ]du
= jbf (x) [ K?u)du — j2b*f'(x) [ uK?(u) + -+,
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and
57 (S a?ER (2) =
— ¥ a? [jbf(x) [7 K2 (w)du — j2b*f (x) [, uk?(u) + -]
= —f() [7 K*du Tl ja? -~ @) [7 uk2@) By j2a? + ()
= —f@) 7 K2 W) du X, ja? +o(n?).

Now,

EK

Xk [52) = 1 K [ K [ po

=b[° K E‘-] K [3] £ - bu)du
= bf_ZKE] K [ﬂ [f () — buf '(x) +%”"(")+ - Jdu
= bf () [ K [5] K [] du — b2 Go) [ uk [3] & [7] s+ -
= bf(x)D; — b*f (x)Dy + -,

where D; = [© K [ﬂ K [ﬂ du and D, =[" uk E] K [%] du . Now,

L K [ ER [
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2;<12 a;a; [bf (x)D; — bzf (x)D3 + -]

nb2

zf(")zjdﬂ a;q; Dy — "f (€3] YjaXayaD; + O(n)

zf(x)ZK[Zajalf K[ ] [ ]du+ o(n~1).
Therefore, the asymptotic variance of f(x) is
Var(f(x)) =

L9 (* k@) duTd, jo? + L2533 aja, [% K [2] K [¥] du + o)

f(x){f_sz(u) duzj 1/a; +22]<12a]alf K= K[—- du}+o(n™1)
=195, a,, ..., az) + o), (2.12)

where S(ay, @y, . a2) = [° K2 duTd,ja? + 2 e [T K [%] K [] du}. Note

that the convergence rate for variance of f(x) is O(nb)™2, the same as that of the

classical kernel estimator and that of higher-order kemel estimator.
2.3.3 The Mean Square Error and the Smoothing Parameter of f(x)
The asymptotic mean square error (MSE) of f(x) is

MSE (f (x)) = E(f (x) — f(x))*
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=Var(f(x)) + (Bias f(x) )?

. [®)5@12ma0) (b*f"’)(x)ur(K)Am)z

nb r!
27 §(r)? 2(K)A2
_f S(t:l,)az,...,ad) il (zc:f)t; (K)Arsy (2.13)

The value of & can be obtained by considering the MSE of f(x) as a function of b
(say T (b)), differentiate T(b) with respect to b and equating to zero, then solve the

resulting equation with respect to b to obtain,

2
_f(x) S(al, Az, aun ad) i 2rb2r_1f(r) (x).urz(K)ATZ—.'_I

nb? )? =0

which implies

f(x)S(ay, az ... ag) _ Zrbzr—a.f(r)z(x)#rz(K)A%+1
nb? - ()2 '

Multiple both sides by b?, then we obtain,

£) S(ay,@pmag) _ 2rb? T+ O (0 2(K) A2,
n - ()2 ’

and then,

(L) St )r)?
n(@r)fM (x)ur?(K)AZ 44

1 -1
= Vi o) [ (2.14)
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5(ay az,-.aqa)(r)?
where VV,. = | e (K}A,.+1] +1, Note that, the smoothing parameter b ~—

-1
f(x) ]2r+1 [n]Jzr+i— 0 asn— oo but at a

when n — oo, Also, the term VV, |
£ @)

rate slower than n~? because 3;1—1 < 1. Now, by substituting the above expression
of b back into Formula (2.13) leads to the smallest possible MSE of f(x).

MSE(f(x)) =

f(x)5(aq,a3,..,.04) (zr)j‘(f)z(x)#rz(m‘qrz_"'l

1 \2r
([ 100 S(ay.a3.-.ag)(r)? rm) PO N2 (01 AR ]
+

]zﬁf (rh)?

f(x) $(ay.az,..ag)(r)?
2
n(20)f (" (ur2 ()42

-2r

= [ [F ()5 (ay, g, .., 2 TFALF O (x) 1, 2 () A2, JEF 1] ZFHE
{2r)zrei{ryarey

-2r

=TT, [f(x)]zru U(r)z(x)]zr+1 [n)zra (2.15)

2r+1
{2r}2?’/(21’+1) [r|}2/(2r+ 1) [S (al,

2r 1
where TT, = 8y, ... ag)]zr+1 [p 2(k)A%, 42741 . Equation

(2.15) implies that, if the pdf f(x) hasr continuous derivatives and by picking
suitable values of a4, a;, ..., ag suchthat A;, =1 and A3 =Ag =4, ==
A,_, = 0, the speed of convergence can be improved over that 0(n)~%/> found for
r = 2 (the convergence rate of MSE for the classical kernel estimator). For
example, when r = 4, the MSE converges at rate 0(n)~%/°, which is better than

that O(n)~*/5. An inspection of the asymptotic MSE of the higher-order kernel
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estimator (Equation 2.8) leads us to the same conclusion provided that the higher-
order kernel function K, that satisfies (2.1) is obtained. The relationship between
the smoothing parameters, asymptotic biases, asymptotic variances and asymptotic
mean square errors of the higher-order kernel estimator, f*(x) and the proposed

estimator, f(x) are presented in Section (2.4). Despite that the two estimators

~2r

f*(x) and f(x) can achieve O(n)z1, r = 2,4,6, ..., a preference of f(x) over

f*(x) can be obtained as a comparison study in Chapter (3) demonstrated.

2.4. Relationship Between the Asymptotic Properties of f(x) and f*(x)

The optimal formula of the smoothing parameter b for the proposed estimator is

f(x) -1

b=V, [——— ]2r+1 [n]zr+T.

FO% @)

1

2
Where VV, = ((ﬂ) e T a“))ml Therefore & is related to h*where h” is the
2r u? (K)AZ,,

smoothing parameter of the higher-order kernel estimator by

p =g
=k

Substituting formula VV,. in the last equation yields

1
~ {S(@yua;,.. aq) u? AP\t
N ( n2_(K)AZ,, R(Kr) ) h. (2.16)

Note that ,if 7 = 2 then u? (K) = pu® (K,) .
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Suppose that b and h* are related according to Formula (2.16), then the asymptotic

bias ,variance and MSE of f(x) and f*(x) are related as follows:

L Let QQr — #r(K)AH'I Then

B, (f()) = Q@b F (),

r

= 00, (et LN por ) ),

12 _(K)A%., R(K:)

QQr [ S(ay,az,...04) [1 (Kr))2r+1 Bi
= las X
Qr ( 2 (K)AZ,: R(K;) (f ( ))

,
. Ur(K)Aryq (S(al,az,...,ad) ﬂzr(Kr))'z?—TI ., 217
(-0 (k) \ B2 (K)AZ,, R(Kr) B, (f"(x)). (2.17)

L Var(f(x)) = {25100

-1
_ f(x)S(ay, az. -, a4) (5(al,az, ey lg) ,uZT(Kr))W

ke 2, (A%, R(K)
= [S2(ay, Gy o, ag) A2, JF7o0 i Je Var(F*(x)) 2.18)
1 Gz s Ba) A 7 | R () '

-1
III. LetTT,. = 2r + 1)[(2r)zr(r!)2]zr+1 [SZT(al,az, .- ad)A +1‘u (K)]Zr+1

Then the asymptotic mean square error of f (x) is

1

MSE(f(x)) = TT, (f(r)z(x)fzr(x)n_z,-)ﬁ
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n

%MSE(f*(x) )

1

_ (57 (a1.95,.00)AF 4 o7 (K) \2r+1 2y
‘( W (KDRE (k) ) MSE(f*()))  (219)

To simplify formulas (2.16),(2.17),(2.18) and (2.19),let us consider the five values
of r = 2,4,6,8 and 10 and take the second order kernel to be N(0,1) (i.e. K = K, =
N(0,1)).Then pp(K) = 1, us(K) = 3, us(K) = 15 , pg(K) = 105 and pyo(K) =

945 . Also i, (K,) and R(K,) forr = 2,4,6,8 and 10 are given in Table (2.2).

1-If r = 2 then

1
S{aq, as, .., as)\°
bs1.2880( & 2 d)) h*,
3

2
S(ay,a,,...,a3)

. 5
B, (f(x)) = 1.6590A3( 2 ) B.(f*(x)

3

& 1.6590455(S(ay, Gz -, @0))5 Be( (X))
Var(f (x)) = 2.7522A3§(S(a1,a2, ey ad))éVar(f*(x) )
and
MSE (f(x)) = 27522(5*(ay, ay, .., a)ADSMSE(f* (%))

2-If r = 4 then

[y

S(a,,a,, ...,az)\?
b51.0860( (@ Z d)) k.
AS
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S(a,, as, ...

B, (f®)) = —1.3909A5( 2

"““))6 By (f* ()

= ~1.3909(4;5*(a,, a,, ..., ad))% B, (f*(x))

Var(F(x)) = 1.9345(AZ5%(ay, ag, ., ag))Var(f* (1))

and
~ 1 n
MSE (f(x)) = 1.9345(A25%(a;, az, .., ag) PMSE(f*(2) )
3-If r = 6 then
1
S ' y ey 13
b= 1.03694( G a")) h.
A
7
( \i5
z 5(01,82,84) \1 2,
B, (f(x)) = 1.24324, (A—d) B ()
ER
= 1.2432(A,5%(ay, as, ..., ag)) B, (f*(x))
Var(f(x)) = 1.5455(425%2(a,, ay, ..., ag))5Var(F* (x) )
and
- 1 -
MSE (f(x)) = 1.5455(425*2(ay, @y, ..., a2)JEMSE(f* (x) )
4-If r = 8 then
1
S(ay,ay, ..., ag)\7
b= 1.0172( (22,42, d)) B,
Ag
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7
) Bx(f*(x))

S{ay,ay,...,04)
A3

B, (f(x)) =~ —1.1465A9(

= —1.1465(4,5%(ay, a,. -.-,aa)):_? B.(f*(x))

Var(f(x)) = 1.3144(435%%(a,, a,, ..., ad))il'?i/ar(f*(x) )

and
~ 1 ~
MSE (f(x)) = 1.3144(A35(ay, @z, -.., ag) FMSE (f* (x) )
5-¥ r = 10 then
1
S(aq, a3, ...,ag)\?1
b= 1.0074( (@, 2 ")) h.
All
12
~ S(aq,82,s 2,
B, (F(x)) = 1.07664,, (222222 g ( f*(x))
11
1 ~
= 1.0766(4,15*°(ay, a;, .-, 24))21 B (f*(x))
- 1 ~
Var(f(x)) = 1.1590(4%,5%%(a,, a,, ..., az))=Var(f*(x))
and

MSE (F(x)) = 1590(42,5%(ay, s, ..., )T MSE(f*(2) )
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CHAPTER THREE

CONSTRUCTION OF THE PROPOSED ESTIMATOR
AND ASYMPTOTIC COMPARISON
3.1 Introduction

In this chapter, we compare the estimator f(x) and f*(x) in terms of bias and
asymptotic MSE. This required to determine the proposed estimator weights
aq,dy, ..., a4 and the value of the constant d. The global measure; asymptotic mean
square error (MSE) is considered for purpose of comparison, which is equivalent to

use the asymptotic mean integrated squares error (MISE).
3.2 Construction of the Proposed Estimator

Recall that the expected value of the proposed estimator is (Formula 2.10)

E (@) = F@)A; - bf D@y (K) 4z + 2 f )y () A

pr M
0 1 () Ay + 007,

et

where A; = E}Llj‘aj ,7r=2,4,6,..and
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oo]

S Z7K(2)dz, r=246,..,

K) =
e () {0  r=135, ..

We obtain the O(b™) bias for f(x), under the constraints A; =1 and A3 = Ag =
A, = -+ = A,_, = 0.For example, to obtain 0(b?), only A, = 1 is required, while
to obtain O(b*) the constraints A; = 1and Az = 0 are required and so on. In
addition to the above constraints and for each even value of r, the term A, ;4
should not equal zero (i.e. A,44 # 0). If A,;; = 0 then we obtain 0 (b"*2) bias not
O(b"). This also can be concluded by inspection the formula of the smoothing
parameter b (Formula 2.14), which is no longer applicable if A;,, = 0. Therefore
and in addition to the above constraints we need to introduce another constraint
about the value of A, .. In this study, we chose to fix the value of A,,; at a

specific value A chosen to be 0.5 for all different values of r.

To construct the proposed estimator, the weights a4, a,, ..., a; and the constant d
should be determined. If an O(b"™) bias is required, then we need to find
a,as,, ...,z under the constraints A; =1, A3 =Ag=A4;,=-=A4,_, =0 and
Ar‘+1 = A. Because r is even value then the number of constraints 1s §+ 1. This
requires the integer value of d to be §+ 1@ed= g + 1). For example, if r = 2

then the required constraints on a4, a,, ..., Qg are A; = ay +2a; +--+dagz=1

~and A; = a; + 8a; + -+ d*ay = A. The unique solution for the two equations
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can be obtained if d = -'2:+ 1 (i.e. d = 2). The convergence rate for a bias of f(x)

and the corresponding required constraints are given in Table (3.1).

Now, the other more logical method to determine ay,a,, ..., ay is to find their
values that minimize the asymptotic MSE of f(x) under the above mentioned

constraints. The word minimization technique requires d to be greater than §+ 1
(ie.d > §+ 1). We note here that, when d equals the number of constraints then

the values of a,, @y, ..., @4 are determined without minimizing the MSE, while the
increasing in the value of d over the number of constraints gives many sets of
candidate values for the weights and we need to determine the set of values that

minimize MSE.

In the following sections, we will consider a O(b") bias for both estimators; 1)
and f(x), where the five even values r = 2,4, 6, 8,10 are studied separately. For
each value of r, the asymptotic properties of the proposed estimator f(x) are
investigated by choosing the three values of d; d = §+ 1 (no minimization for

MSE),d = £-+ 2andd = g + 3. The value of A is taken to be 0.5 for all different

cases and the second order kernel function Ky = K is N(0, 1). The minimization

problems in this thesis are solved by using mathematica (6) .
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3.3 The Case O(b?) Bias

As we mentioned above, given that O(b") bias is desirable, there are several ways
to construct the proposed estimator, f(x), i.e. to determine d and a,, ay, ..., @4. If
the order of bias is 0(b%) (ie. r = 2) then we will consider three values of d;
d = 2,3,4 according to the above rules. Therefore, we can obtain three proposed

estimators, which are

d

~ 1 X -X,
f(x)=—Z',Z‘,a,-1<f()c , ] d=234.
bj:] i=l Jb

The values of a4, a, ..., @4 are determined under the two constraints:
Ay =Y ja;=1andA; =37, j%a; = (1= 025). (3.1)
The three cases of d are treated as the following:

(1) If d = 2, then the solution of the two equations in (3.1) gives
a, = 1.1667 and a,=-0.0833.
In addition,
QQ, = 0.25, S(ay,a,) = 0.3185,VV, = 1.0496 and TT, = 0.3793.
(2) If d = 3, then the minimization of S(a,, a,, a;) subject to the constraints of
(3.1) gives

a, = —0.6355 , a,=1358 and a; = —0.3604,
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which yields,
00, = 0.25, S(ay, az, as) = 0.1722, VV, = 0.9281 and TT, = 0.2319.
(3) If d = 4, then the minimization of S{a,, a,,a; a,) subject to the constraints
of (3.1) gives
a, = 03898 , a, = —1.5648 , ay = 2.2480 and a, = —0.7510,
and then,
QQ, = 0.25,8(a,,a,,as,a,) = 01126 ,VV, = 0.8526 and TT, = 0.1651

The above three values of d corresponds three different estimators based on F(x).

Now, let bfd) and MSE,Sd) be the smoothing parameter and the asymptotic mean
square error of f(x), then based on the above values of r, d and ay, a,, ..., ag, we
obtain,

(x) - 2 _
b = L0496 [ 1S (175, MSES = 03793[f (]S [F @ ()] o]0

b = 09281 [LES [ul™Vs,  MSES = 0.2319[f (0] 1f D ) 5[]
X

and

b = 08526 [LLEgvs (7, MSE” = 01651 @ (] m] .
X

For r = 2 and based on Table (2.2), the smoothing parameter h* and the MSE of

the higher-order kernel estimator £*(x) are respectively

h* = 0.7764 [;%%]us [n]"YS |, MSE = 04582[f (0)]¥YS[F P (x)]V5[n] 45,
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By comparing MSE(f *(x)),MSEgz), MS Ez(s) and MSE,@ we see that
MSE(f*(x))=1.1974MSE=1.9586 MSE = 2.751MSES (.2)

Also, it follows from the formulas of h*, bga, b?fs) and b§4) that the bandwidth of

the different estimators are related such that
h*=0.7397b{=0.836555"= 0.910655" (3.3)

Formulas (3.2)and (3.3) state that, if the smoothing parameter of the different
estimators are computed according to Formula(3.3), then the asymptotic MSE of
the proposed estimator with d=2,3 and 4 are smaller than that of the higher-order

kernel estimator.

3.4 The Case O(b*) Bias

The case O(b*) bias for f(x) indicates r = 4 and therefore the suggested three

values of d are d = 3,4, 5. The corresponding proposed estimator is

= 1 & x—X,
=— . d y = .
& nb§ §:a,K( % J d=3,4,5

j=1 i=l

The values of a,, a,, ..., a; are determined under the three constraints:
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Ay =3fqja; = 1,43 = 3%, j%a; =0 and As = Xj.1j°a; = (A1 =05) (3.4)

(DIfd = 3, we need to solve the three equations of (3.2) simultaneously. This
gives
a,; = 1.5208 , a, =—-0.3167 and a; = 0.0375,
Based on these values of a4, a,, a;, we obtain,
QQ, = 0.0625, S(a,,a;,az) = 0.3939, VV, = 1.3252 and TT, = 0.3344.
Also,

b = 13252 LD [n]7/% and MSES = 0.33441f () Lf O ()] /°[n]

(2) If d = 4, then we want to minimize S(ay,a,,a3,a,) subject to the three
constraints of (3.2), which gives
a, =-07091, a, =19132 , a; =-0.9182 and a, = 0.1593.
These values and the valuesr = 4 and d = 4 give,
QQ, = 0.0625, S(ay a, as;a,) =0.2088, VV,=12350 and 7T, =0.1902.
Also,
b = 1.235 [f—({-f;z?)]l/‘-‘ [n]"1° and MSES® = 0.1902[f (x))*/°[f ) ()]/°[n]"/°
(3)Ifd = 5, then
a, = 0.4176 , a, = —1.9654, a; = 3.6927, a, = —2.2146 and a; = —2.2146,
which are obtained by minimizing S (al, Az, A3 Ay, as) subject to the

constraints of (3.2). Accordingly, we obtain,
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00, = 0.0625, S(ay, a,, as, a,,,as) = 0.1403, VV, = 1.1816 and TT, = 0.1336.

Also,

b =1.1816 [%3]1/9 [n]~¥%and MSESS = 0.1336[F (x)]*/°[f % (x)]/9[n) /5.
X

If r =4, we can use Table (2.2) to produce the smoothing parameter and the
asymptotic (MSE) of the higher-order kernel which are respectively given by

h* = 1.1602 [f(fo%]l/‘? [0]"Y° and MSE = 04616[f()]¥°[f®° ()]Y°[n]~*/°
X

By comparing MSE(f * (x)),MSES?, MSES®) and MSES we see that
MSE(f* (x))=1.1974MSE\¥=1.9586 MSE{ Y= 2,751 MSES> (3.5)

Also, it follows from h*,b$, b and b that the bandwidth of the different

estimator are related such that
h*=0.7397b{=0.8365b "= 0.9106b." (3.6)
For any value of h* taking bf') = 1.3519h™ makes MSEF) = 0.835MSE (f*(x)),
: 4) _ . 4 _ Fx . (5) _
taking b, = 1.195h" makes MSE,” = 0.51MSE(f*(x)) and taking b, =
1.098h* makes MSES™ = 0.363MSE( /*(x)).
3.5 The Case O(h®) Bias

This case indicates that r = 6 and therefore the three valuesof d ared = 4,5,6.

The proposed estimator is represented as
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o5 on(=5) an nss

i=1 i=l

The values of ay, a5, ..., 4 are determined under the four constraints:
A]_ = Z?:ljaj = 1, AB = Z?=1j3aj =0 3A5 = Z?=1j5aj = 0 and
A, = 2}21}'7“1' =(A= 05) 3.7

(DIfd = 4 then
a; = 15986, a, =-19654, a; = 0.0756 and a, = —0.0070
This value are obtained by solving equation in (3.3) . Based on these values, we

obtain

QQ. = 0.0104, S(a,,a,,as,a,) = 0.4064,VV, = 1.5556 and TT, = 0.2831.
Also,

b(4) = 1.5556 [-L5- ({g:’z )]1/13[n] 1/13 44 MSE(Q =0. 2831U(x)]12/13[f(6) (x)] 1/13[n]-12/13

(2) If d =5, then we want to minimize S(a,, a,, ..., as) subject to the four
constraints of (3.3), which gives
a; =—-0.7298 , a,=2.2624 , az =-1.4212 , a, = 0.4365 and
as = —0.0554
These values and the valuesr = 6 and d = 5 give,

0Q, = 0.0104, S(ay, dp,...,as) = 0.2265, VV,=14871 and TT, = 0.1650
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Also,

b(s) 1.4871 [ ():SIZ )]1/13 [n] 1/13and MSE(S) = 0. 1650[f(x)]12j13[f(6)2(x)]1/13[n]-—12/13

(3)Ifd = 6, then
a, = 0.4258, a, = —2.2227, a5 = 49473, a, = —4.0029 and a; = 1.5064,
a, = —0.2238

which are obtained by minimizing S(a,, a,, ..., ag) subject to the constraints
of (3.3). Accordingly, we obtain,
QQ, = 0.0104, S(a,, ay, ..., ag) = 0.1570 , VV, = 1.4458 and TT, = 0.1177.
Also,
b =1 4458[)({6 §? J1/13 [n]~4/13and MSEL® = 0.1177{f (x)] 1%/ 13 [f (&) (x)] /13 n]"12/13,
For r = 6 and based on Table (2.2), the smoothing parameter A* and the MSE of

the higher-order kemel estimator f*(x) are respectively

h* = 1.4451 [fg;‘) ]1/13 [n]—1/13 and MSE = 04678[f(x)]12/13[f(6) (x)]1/13[n]-—12/13

by comparing MSE(f* (x)),MSE"), MSES® and MSES® we see that
MSE(f* (x))=1.6524MSE V=2.8351MSE "= 3.974MSE® (3.8)

Also, it follows from h*,bgﬂ, b§53 and bga) that the bandwidth of the different

estimator are related such that
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h*=0.9282b=0.79175%= 0.9995p % (3.9)

Equation (3.8) indicates that the proposed estimators f2 (%), f&(x) and f(x) are
more than 39% , 64% and 74% better than estimator f*(x) respectively in MSE.
The other cases for any convergent rate of bias can be treated in the same manner.
The results of the tow cases 0(b®) and 0(b'°) are given in Tables (3.1) and (3.2)

together with the results of the previous section.

42



Table (3.1): Convergence rate of 0(b") bias and constraints for the proposed estimator and the

values of weights for different values of r and d.
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r d aqy,Qy,...,04 Constraints o)
2 a; = 1.1667, a,=-0.0833
7 3 a, =—0.6355, a,=1.3534 A; =1, A; =05 O(bz)
a;=-0.3604
a a, = 0.3898, a;=-1.5648
a;=2.2480, a,=-0.7510
3 |a, =15208,  a,=0.3167
az=0.0375 A, =1, A;=0 )
4 4 a = _0.7091, a2=1.9132 AS =05 O(b )
a;=-0.9182, a,=0.1593
5 |a, =04176, a,=-19654  ;=3.6927
a,=-2.2146, as= 0.4587
a4 a, = 1.5986, a,=-0.3986
az=0.0756, a,=-0.0070 :
A;=1, A;=0
6 5 [@=-07298  a=22624 © a=-14212 | ' 0" 4 o1 o9
a,=0.4365, a=-0.0554
6 |a1=04258,  @,=2.2227 a;=4.9473
a,=-4.0029, a5=1.5064, a,=0.2238
5 a, = 1.6667 a;=-0.4763 3=0.1191
2,=-0.0199, a5=0.0016 Aj=1 A;=0
6 a; = —0.7445, a,=2.5377 a;=-1.8902 Az =0, A; =0 O(bB)
8 24=0.7839, as=-0.1811, a,=-0.0183 Ag=0.5
a, =04290  a,=2.4132  05=6.0559
7 @,=-5.9421, a5=3.0752,  ae=-0.8434
a,=0.0975
6 |a=17143  a;=-05357  a;=0.1587
2,=-0.0357 a5=0.0052  a,=-0.0004
a; = —0.7546  a,=2.7562 a;=-23102 | A;=1, A43=0 10
10 7 a,=1.1613, as=-0.3689 as=0.0687 As=0, A, =0 0(™)
a,=-0.0058 Ag=0, A;; =05
a, = 04149  @,=-25013  a;=6.9279
8 | aq,=7.8105 as=4.9805,  as=-1.9036
a,=0.4107 ag=-0.0388

Note that: A4; = Z}i.;ljlaj.
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Table (3.2): The values of r, d and the corresponding values of QQ,, S(ay,a,, ...,as) TT,
and VI;
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T d Q0, S(ay, ay, ..., a4) A TT,
2 0.3185 1.0496 0.3793
2 3 0.2500 0.1722 0.9281 0.2319
4 0.1126 0.8526 0.1651
3 0.3939 1.3252 0.3344
4 4 0.0625 0.2088 1.2350 0.1902
5 0.1403 1.1816 0.1336
4 0.4064 1.5556 0.2831
6 5 0.0104 0.2265 1.4871 0.1650
6 0.1570 1.4458 0.1177
5 0.4171 1.7631 0.2514
8 6 0.0013 0.2385 1.7061 0.1485
7 0.1680 1.6776 0.1073
6 0.4243 1.9514 0.2283
10 7 0.00013 0.2471 1.9018 0.1364
8 0.1775 1.8721 0.0996

Note that:

(K} Ay © . 0
0, =*% | 5oy, a, ..., ag) = [, K2 du T jo? + 25 a N oy [ K [2] K [2] au

r!

1
_ [r93stas.az....aq) ]2+ _ 2r+1 2r
T @rwE, 04z, ] y Th= ([Zryr /@ ) {pry2/er+1) [S(az. az, ... aq))7r+

(12 (k) A2y [P0

vy

and 4,,, =05 for r = 2,4,6,8,10.
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CHAPTER FOUR

CONCLUSIONS AND SUGGESTION FOR FUTURE

WORK

4.1 Conclusions
On the basis of the previous two chapter, we conclude the following:

A general new estimator for the continuous pdf f{x} is proposed. The asymptotic
properties of the proposed estimator are derived. The mathematical comparisons
between the proposed estimator and the higher order kernel estimator shows the
superiority of the proposed estimator over the higher order kernel estimator. The
proposed estimator depends on same quantities; d, a,,a», ..., @z which were under
the user control. The choice of these quantities plays a vital role in the bias
convergence rate of the proposed estimator and in its variance quantity. Despite
that the asymptotic properties of the proposed estimator were derived for x €
(a, c0), where a = —oo, it is straightforward to derive its asymptotic properties for

any finite value of a.
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It is worthwhile to mention here that we performed a limited simulation study for
finite sample size. The simulation study results give good performances for the

proposed estimator over that of the higher-order kemnel estimator.
4.2 suggestions for further research

How is the performance of the proposed estimator f(x) compared to the classical
kemel estimator f(x) and the higher order kemnel estimator f*(x) for finite
samples? To answer this question a simulation study needs to be addressed.
Mamron and Wand (1992) gave different normal mixture densities ,which
commonly used to study the nonparametric estimator for the probability density
function f{x). the Marron and Wand’s densities represent symmetric, kurtosis,
unimodalies, bimodal, trimodal, skewed, and strongly skewed distribution. These
densities can be used to study and to compare the finite sample properties of the
estimator f(x) , f(x) and f*(x) in the future research . In addition, the value of
Aryq = Ais fixed at 0.5 in this thesis. A possible future work can be adopted to

study the influence of choosing A on the performance of f(x).
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